首页> 外文OA文献 >Multi-Label Learning with Global and Local Label Correlation
【2h】

Multi-Label Learning with Global and Local Label Correlation

机译:具有全局和局部标签关联的多标签学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is well-known that exploiting label correlations is important tomulti-label learning. Existing approaches either assume that the labelcorrelations are global and shared by all instances; or that the labelcorrelations are local and shared only by a data subset. In fact, in thereal-world applications, both cases may occur that some label correlations areglobally applicable and some are shared only in a local group of instances.Moreover, it is also a usual case that only partial labels are observed, whichmakes the exploitation of the label correlations much more difficult. That is,it is hard to estimate the label correlations when many labels are absent. Inthis paper, we propose a new multi-label approach GLOCAL dealing with both thefull-label and the missing-label cases, exploiting global and local labelcorrelations simultaneously, through learning a latent label representation andoptimizing label manifolds. The extensive experimental studies validate theeffectiveness of our approach on both full-label and missing-label data.
机译:众所周知,利用标签相关性对多标签学习很重要。现有方法要么假定标签相关是全局的,并且所有实例都共享;或者标签相关性是局部的,并且仅由数据子集共享。实际上,在实际应用中,可能会发生两种情况:某些标签关联在全球范围内适用,而某些标签关联仅在本地实例组中共享。标签的相关性要困难得多。也就是说,当缺少许多标签时,很难估计标签的相关性。在本文中,我们提出了一种新的多标签方法GLOCAL,该方法可以处理完整标签和丢失标签的情况,通过学习潜在标签表示并优化标签流形,同时利用全局和局部标签相关性。广泛的实验研究证实了我们的方法在全标签和缺失标签数据上的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号